Rep of Quivors Thursday, February 4, 2016 5:10 PM

Quiver (Qo, Q., h,t)

 Q_o : verties $h: Q_o \rightarrow Q_o$ Q_o : edges t:

- A quiver representation V consists of familiar of f.d. vector spaces V(x) and linear maps: $V(\alpha):V(t\alpha)\to V(h\alpha)$

- A subrep of a quiver rep $(V(x), V(\alpha))$ is a representation $(W(x), W(\alpha))$ s.t. $W(x) \subseteq V(x)$ $\forall x \in Q_0$ $W(\alpha) = V(\alpha) |_{W(f,\alpha)}$

- An irrechnible repr is a quiver rap whose only Subrep are O & itself

Comparable to kG: kQ the puth alg

kQ: vector space speamed by publis $P.\xi \in Q \qquad p.\xi = \begin{cases} p\xi & \text{if } h\xi = t(p) \\ 0 & \text{otherwise} \end{cases}$

Example: Q: x = y

kQ = ka + kex + key

 $e_{x}^{2} = e_{x}$ $e_{y} = \omega e_{x} = \omega$

 $2^3 = 0$ $e_x e_y = e_y e_x = 0$

Prop Rep(Q) is an equivalent category to kQ-mod V vep of Q $\overline{V} = \bigoplus_{x \in Q_0} V(x)$

A is a fid. as alg /k

A) is Morita equivalent to 60/1 for some Quiver Q

A is Morita equivalent to kQ/I for some Quiver Q
the equivalence between & ideal I
Rep Categry
The irreducibles are very nie in hQ/I
= very simple (short) projective vesolutions of kQ/I - mudules.
R (Artinian) ving
a short exact see of R modules
$0 \to L \to M \to N \to 0 \text{is}$
called almost split it
1) if the seg is not split
D- N is inderographe
and $\varphi: A \rightarrow N$ is not
on ison where A is indecomposable
the & factor through M
3) Ψ: L → A where L,A in decomposable
and 4 not iso, then 9
factor through M
Example: R=k[X]/(xn) L(x)/(xn) I <m<n< td=""></m<n<>
$0 \to kt \propto 1/(x^m) \to kt \times 1/(x^{m+1}) \oplus k(x)/(x^{m-1}) \to k(x)/(x^m) \to 0$
$a \mapsto (x_0, a)$

Crisen a Rinte-dir alg mont a mode at DA 1 inch.

Given a finte-dir alg, put a wide at cach indecomposable module, put arrows between nodes for each irreducible maps.

f: V>W is vived it neither

0 > V \(\frac{f}{2} \) W \(\rightarrow \text{wker} \if >0

0 > kerf -> V \(\frac{f}{2} \) W \(\rightarrow \text{cach} \)

o \(\rightarrow \text{frac{f}{2}} \) W \(\rightarrow \text{cach} \)

o \(\rightarrow \text{kr} \)

Towards Gabriel's Thm

Q is of finite type if there are finitely many isomorphism clauses of indecomprossables

The (Gabriel) A connected quivers Q
of finite type has underlying graph
(that is, forgetting the orientation on edges
that is me of An, Dn, Eo, E7, E8)